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Abstract-The heat storing packing, an intrinsic part of a thermal regenerator. imposes an inertia which 
prevents instantaneous response to changes in operating conditions. Presented here in non-dimensional 
graphical form are the responses of a thermal regenerator, initially at cyclic equilibrium, to permanent 
step changes in inlet gas temperature and in gas flow rate. It is demonstrated that reduced length A 
parameterises this thermal inertia in the balanced case. The effect of imbalance in regenerator operation 

upon thermal inertia is investigated. 

NOMENCLATURE 

regenerator heating surface area [m’]; 
specific heat of storing matrix [J/kg K]; 
bulk heat-transfer coefficient [W/m’ K]; 

length of regenerator [m] ; 
mass of heat storing matrix [kg]; 
mass of gas resident in regenerator [kg] ; 
length of operating period [s] ; 
ratio of reduced lengths, /\‘/A”; 

specific heat of gas [J/kg K]; 
temperature of heat storing matrix [K]; 
temperature of gas [K]; 
flow rate of gas [kg/s]; 

distance from regenerator entrance [m]. 

Greek symbols 

B* degree of unbalance; 
1, /, ratio of the magnitude of a step change to 

that of the threshold value: 

5, dimensionless length; 

~fi, &, dimensionless measure of transient 

response-rotary regenerator; 
Egl,&g2, dimensionless measure of transient 

response-fixed bed regenerator; 
dimensionless time; 
thermal ratio; 
total dimensionless time required to regain 
equilibrium following a step change in 

operating conditions; 
time [s]; 
reduced length hA/WS [dimensionless]; 
reduced period &I( P - m/W)/MC 
[dimensionless]. 

Subscripts 

IN, inlet; 

OUT, outlet; 

m, chronological mean; 

H, harmonic mean. 

Superscripts 

refers to hot period; 
I, 

(i, 
refers to cold period ; 
refers to cycle number n; 

(0 refers to time 0; 

(01, refers to cyclic equilibrium prior to step 
change; 

(x)5 refers to cyclic equilibrium after step 
change. 

INTRODLICTION 

MOST previous theoretical work confines itself to the 
periodic behaviour of thermal regenerators. and this is 

acceptable when the regenerator is required to work 

under rarely varying operating conditions. However, 
for some regenerators, the effect of thermal inertia 
when changes in operation take place becomes im- 
portant. Cowper stoves are required to meet a chrono- 
logically varying thermal demand from the ironmaking 
furnace. In this case the thermal inertia has a “nuisance 

value” and control strategies must be developed if 
these varying thermal loads are to be accommodated 
with minimal fuel consumption. Air conditioning 
regenerators are required to operate in varying climatic 
conditions; here the thermal inertia is exploited to 
smooth out the effect of these variations. It follows 
that an understanding of the thermal inertia of regen- 
erative systems is fundamental in all such areas of 
application. 

London et ~1. [l] examined the transient response 
of the exit gas temperatures arising from a step input 
change in inlet gas temperature. They were concerned 
with gas turbine plant thermal regenerators. They 
restricted their considerations to balanced regenerators 
(W’S’P’ = W”S”P”) and showed that for A’/lT = 
A”/n” > 100, the transient response before cyclic equi- 
librium is re-established, does not depend upon 
reduced period and can be expressed solely as a 
function of a reduced length. In their paper, they ex- 
tended earlier work by London et ul. [2] and by Cima 
and London [3] who dealt with the recuperative heat 
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exchanger. Green [4J found, similarly, that for sym- 
metric regenerators (A’ = A”. n’ = n”). the total 
dimensionless time to rc-establish cyclic equilibrium 
following a permanent step change in inlet gas tcm- 

perature can be approximated by a function of reduced 
length A only. Green proceeded also to imestigate the 
effect of step changes in gas few rate and showed that 
the time to cyclic equilibrium to be reattained is a 
non-linear function of the magnitude of the step 
change; for the particular Cowper stove configuration 
he considered. this time reached a maximum value of 
about 2-3 weeks for step changes of the order of IO”,, 

in gas flow rate (hot period). 
The implication of Green’s work is that except 

where operating conditions rarely change, it is unlikely 
that Cowper stoves have an opportunity to work at 

cyclic equilibrium. The object of this paper is to 
enhance our understanding of the transient (non- 
periodic) behaviour of thermal rcgeneratorz for both 
changes in flow rate and inlet gas temperature. In 

particular the effect of imbalance ( W’S’P’ # W”S”P”) 
in regenerator operation upon transient behaviour is 
investigated. 

MATHEMATICAL MODEL. 

The temperature behaviour of a thermal regenerator 

is represented by the differential equations (I) and (2) 

discussed by Hausen [S]. 

if 
_ ~. = 7‘-[ (1) 

where < and q are dimensionless measures of distance 

and time respectively. 

(3) 

(4) 

Hausen proposed the dimensionless parameters 
“reduced length” A and “reduced period” III to char- 

acterise each period of operation, where 

(5) 

The superscripts ’ and ” are used to distinguish hot 

and cold periods. The assumptions embodied in this 
mathematical idealisation are discussed by Willmott 
and Thomas [6]. The following boundary conditions 
appertain : 

(i) The hot and cold period inlet gas temperatures 
ti,. and tl;, remain constant during any cycle. 
Step changes are made at the beginning of the 
period under consideration but the operating 
conditions then remained unchanged until cyclic 
equilibrium is re-established. 

(ii) The regenerator is operated in contra-flow mode. 
All temperatures arc tneasuretl from the gas 
entrance in each period and thus the solid tem- 

perature profile at the beginning of an] period is 

related to the profile at the end of the preceding 
period by the equations (7) and (8) 

7-‘( 0, A‘) = T”( PI’. I. - J) 

T”(0. J’) = T’(P’. L - I,) 

for 0 < y d L. 

(7) 

(8) 

SOLUTION OF DIFFERENTIAL EQUATIONS 

The finite difference method of solution adopted in 
this paper is that of Witlmott [7] with an improved 
convergence criteria (see Appendix). London e/ (I/. [I] 

produced their graphical solutions using both an 
analogue computer and the numerical methods of 
Lambertson [8] developed for digital computation. 

RESPONSE TO A STEP CHANGE IN 
OPERATING CONDITIONS 

London rf ul. [I] illustrated the responses to 
changes in operating conditions for a rotary regen- 

erator by defining the following dimensionless par- 
ameters cf,“’ and ~;f2(“, given 

whereO<O<r;. 

At equilibrium, immediately prior to a step change 
(fl = O), $,‘O = .E&(‘) = 0. once cyclic equilibrium has . 

been restored (0 = X) rfI”’ = &“’ = I. 
London restricted his consideration to rotary regen- 

erators where the exit gas temperature isan average 
over the whole face of the rotating heat storing mass 

(chequerwork) currently exposed to the gas stream 
under consideration. Since this type of regenerator 
operates continuously London was able to express 

cf; and .$ as continuous functions of time. 
This approach ignores two factors namely: (1) the 

thermal state of each sector of the chequerwork will 
be different at the moment when a step change is 
effected and (2) the response on the cold side to changes 
on the hot side (and hice \‘crsa) will bc delayed by 

a time determined by the speed of rotation of the 
chequerwork. London was able to ignore these prob- 
lems by considering cases where A’/Il’ = A”/n” > 100. 
that is where the angular velocity of the rotor is 
great relative to the gas flow rate. 

In our work we assume that for fixed bed regen- 
erators, step changes are made at the beginning of the 
period under consideration and the responses cgf and 
sgz are measured in terms of the chronological 
average exit gas temperatures, I&~,,,“” and t&T,m(n) 
for the nth cycle following the step change. We denote 
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Cg*(“J = 
tg”T,m(n) - t;;“T,m(o) 

cxJT,m (a) - t;;“T,m (0) (12) 

tb”T,m (‘I and t” OUT ,(O) denote the mean exit gas tem- 

peratures at equilibrium in the cycle just prior to the 
step change; tbuT,m(mD) and t&+,m(D’ are the corre- 
sponding temperatures once cyclic equilibrium has 
been attained again. 

&Yr’“’ represents the exit gas temperature response 
on the same side as that on which the step change in 
inlet gas temperature or gas flow rate is made; Eg2’“) 

represents the response on the opposite side to that of 
the step change. The linear nature of the model allows 
us in this work, to consider step changes made on the 

hot side alone. The results are equally applicable to 
step changes on the cold side if Egl’“’ [see equations 
(11) and (12)] is interpreted as cgZC”) and vice versa. 

Our work is applicable to rotary regenerators if it 
can be assumed that the different thermal states of 
the sectors of the rotor at the moment of the step 
change can be ignored. For this case, Egi@’ and ag2(“) 
correspond to &fi [Q = n(P’ + P”) - P”] and Efi [O = 
n(P + P")] for step changes made on the hot side. The 

delay in response on the cold side to such step 
changes on the hot side is thus represented. 

The overall performance at both the new and old 
equilibrium conditions is defined by the thermal ratios 

V&G and &G. For changes in inlet gas temperature 
we have 

r$ - fb”T+@’ t;N - t&lT,m(o’ 

YREG = 
= 

t& - t;N tIN - tl;N 

New equilibrium Old equilibrium 

New equilibrium Old equilibrium 

(13) 

(14) 

where t& is the inlet gas temperature after the step 
change. 

When a step change is made in the gas inlet tem- 

perature, A’, A”, II’ and II” are unaffected and thus 
the thermal ratios at the new equilibrium are equal to 
those at the equilibrium in force prior to the step 

change (13) and (14). This enables tbC’T,m(m) and 
I, tOUT,m(m) to be calculated before the step change and 

agi”” and agZ(“) to be evaluated from t&,r,mc”) and 
II toLiT,,, as the regenerator simulation proceeds. 

However, when step changes are made in gas flow 
rate, some or all of the parameters A’, A”, II’ and II” 
are altered. Unless the thermal ratios for periodic 
behaviour for the revised dimensionless parameters 
are known, ag i(“) and EgZ(“’ can only be calculated once 
cyclic equilibrium is re-established and tbLiT,m(al and 
t$nT ,,,(=) have been computed. 

London [1] exhibited the response of a regenerator 
to changes in operation by displaying graphically the 
variation of Efi and Efi with time. Green [4] on the 
other hand compared the effect of different step changes 
in operation in terms of the total time taken to re- 
establish cyclic equilibrium. In this paper, we employ 
both approaches and investigate the dependence of 

agl and Eg2 upon the parameters of the system which 
are reduced lengths and reduced periods for the hot 

and cold periods as they describe the regenerator both 

before and after the step change. 

A further parameter is the magnitude of the step 
change although as London pointed out, the linear 
nature of the model implies that cy, and t:gZ will not 
be dependent upon the size of any step change made 
in inlet gas temperature. We will show that this is not 

the case for step changes in flow rate. 

STEP CHANGE IN INLET GAS TEMPERATURE 

Previous work here has been restricted to symmetric 
regenerators (A = A’ = A”, II = II’ = II”). We discuss 

this case and then extend the analysis to include, 
unsymmetric-balanced (A’,TI’ = A” ‘II”) and unbal- 

anced (A’,‘II’ # A”/II”) regenerators. 

Symmetric case 
In Fig. 1 are displayed the responses sg, and sg, as 

functions of the dimensionless time parameter q for a 
reduced length A = 10. It will be seen that the response 
is independent of reduced period II for ATI = 100. 

FIG. 1. Responses cgl and q2 to step changes in hot inlet 
gas temperature for A;II > 100. 

200 and 400, thereby confirming the observations of 
London ef al. [l] for A/II > 100. We have investigated 
cases outside the ranges examined by London and we 
have shown, see Fig. 2, that for example with A = 28, 
agl and Eg2 do exhibit some dependence on reduced 
period II for II = 16, 8, 4 and 2. Nevertheless the 
total dimensionless time 0 needed to re-establish cyclic 
equilibrium remains independent of reduced period. 
The regenerator approaches cyclic equilibrium asymp- 
totically. However this equilibrium is considered here 
to have been re-established when the measure of the 
convergence (see Appendix) falls below F: = 10m4. 

The response displayed in Figs. 1 and 2 together 
with London’s results indicate the response sg, on the 
hot side to a step change on the hot side converges 
towards equilibrium more slowly than ag2, the corre- 
sponding response on the cold side. Employing the 



FIG. 7. Dependence of tresponscs my, and c.(/~ upon n for 
step changes in hot inlet gas temperature. (Symmetric case.) 

criteria described in the Appendix, no difference can 

be detected between the dimensionless times required 
for EY, and ~8~ to converge. It follows that without 

loss of generality, it is possible to examine the response 
~9~ alone to facilitate clearer graphical presentation. 

Step changes in inlet gas temperature (or gas flow 
rate) on the hot side result in perturbations in the 

temperature of the solid packing: indeed the effect of 
the thermal capacity of the packing conceals the effect 
of the step change upon exit gas temperature in the 
hot period. However. these perturbations have an im- 

mediate effect upon the gas flowing through the regen- 
erator in the opposite direction in subsequent cold 

periods. As a consequence the manifestation of the 
effect of step changes upon the exit gas temperatures 
appear to be much slower on the side on which the 
step change is imposed. 

The “size” of the force imposing oscillations of tem- 

perature upon the solid packing can be measured by ’ 
the thermal capacity flow rate WS of the gas. in either 
period of operation relative to the corresponding “size” 
Liz of the regenerator. What we might expect is that 
the larger the rrl~irr size of LVS. that is the smaller 

the reduced length A = I;A,!IVS, the sooner the packing 
will respond to changes in operation. 

That the reduced length A is an efrective measure 

of the inertia of a symmetric regenerator is illustrated 
in Fig. 3 where ~~~~~ and 0 are displayed for reduced 
period fixed at n = 4 for different reduced lengths 
A = 32. 24, 16 and 8. The initial lag in the response. 
which increases with reduced length is typical of a dis- 
tributed parameter ayslcm of which a thermal regen- 
erator system is an example. 

The revised convergence criteria (see Appendix) has 
been used to improve Green’s formula relating the 
total dimensionless time to re-establish cyclic equilib- 
rium 0 to reduced length A. Green proposed that for 
A < 30, 

0 = 0.524AL + 3.76OA + 9.432. (15) 

rI =4 

.ii ~32 a=776 

+;‘! -240.472 

x,? = 16 @I=232 

O,?=R 0: 84 

b I(;. 3. The cll’ect of reduced length A upon ihe response 

qI and the time to equilibrium 0. (Symmetric case.) Vertical 
lines denote time when cyclic equilibrium i< restored. 

We suggest the following equation is more accurate 

0 = 0.622A’+4.144A+6.464 (16) 

for A < 4.0. It is recognised that 0 is also a function 

of the convergence criterion. Equation (16) assumes 
i: = 10e4 (see Appendix). For another value of E = E 

(e.g. lo-‘). we can define the time to equilibrium to 
be OE which can be estimated using 

OE = 0 loguE:log,i:. 

For example if E = 10 ’ 

OE = olog,(lo-‘),log,(Io~J) 

and 0,. = 0.3. 

Equation (16) was obtained by fitting a quadratic 
function in A by the method of least squares to the 
values of 0 which we computed by regenerator simu- 
lation for different values of A. It was noted that 0, 

the total reduced time to regain equilibrium computed 
in this way is always obtained from an integral number 
of cycles: the coefficients of the quadratic were there- 
fore restrained in such a way that the time to equilib- 
rium estimated using the quadratic never exceeded the 
corresponding time calculated using the simulation at 
any of the data points used. 

Utts~tnmrtric-httltrncrtl regrtwrutors 

Since A’XI’ = A”;II” for unsymmetric but balanced 
regenerators, the hot thermal ratio VI& is equal to the 
cold thermal ratio &(;. Hausen [9] proposed the use 
of “harmonic means”, AI, and & defined as: 

to parameterise the equilibrium condition of the un- 
symmetric-balanced regenerator in terms of a sym- 
metric regenerator with A = AI, and KI = n,,. Iliffe 
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[lo] first confirmed the acceptability of this parameter- 

isation using harmonic means, for the calculation of 

thermal ratios. The degree of symmetry can be specified 
by a parameter p where p = A’jA” = lT’/TI” from which 
it follows that 

7 

A’ = (p-t 1)AH/2 and n’ = @+ l)II,/2 

and that A’/KI’ = A”/II” = AH/&. Iliffe examined 

cases over the range 0 < n” < 24 and 0 < A” < 24 for 
p = 2 and 0 < n” < 18 and 0 < A” < 18 for p = 3. 

We have verified that the transient behaviour of this 

type of regenerator can also be adequately parameter- 
ised by the use of harmonic means. The responses 
Egl and Eg2 to a step change on the hot side inlet 

gas temperature for the symmetric regenerator with 
A = A,, = 24 and I’l = n,, = 8 follow very closely the 

responses sgl and Eg2 respectively for the correspond- 

ing unsymmetric-balanced cases for: 

3= 52 

e 

IY A. rI’rI”p 
. 24 24 4 4 I 

tl8 36 4 4 ‘/2 

0 24 24 6 3 k2 

X36 18 4 4 2 

+ 24 24 3 6 2 

+I8 36 6 3 t 

5c 

(i) A’ = 36, A” = 18, n’ = 12 and II” = 6, 
(ii) A’ = 18, A” = 36, ll’ = 6 and l-I” = 12. 

Note that because the step change considered is 
applied to the hot inlet gas temperature, it is necessary 
to consider both cases (i) and (ii) which correspond to 
p = 2 and p = -). Further the response egl for p = 2 
and that for p = : lie on opposite sides of the response 

Egl for the corresponding symmetric case (p = 1). 
The time 0 to equilibrium can be calculated approxi- 

mately using the revised Green formula for the 
equivalent symmetric case 

OH = 0.622/\:, +4.144AH + 6.464 (17) 

for AH < 40, E = 10m4. From OH can be obtained the 

actual dimensionless time 0 for the unsymmetric- 

balanced regenerator to regain equilibrium. 

o=+(l+p) 1+’ ( ) P 

The approximation (17) provides a relative accuracy of 
10% or less. 

Unbalanced regenerators 

In the balanced case, the forces imposing the results 

of the step change in operation in the hot period might 
be regarded as being partly counter-balanced by 
opposing forces in the cold period. For example the 

propagation of the heat front down the length of the 
packing resulting from a step change in inlet gas tem- 
perature in the hot period will be delayed to a greater 
or lesser extent by the action of the cold gas passing 
through the packing in successive cold periods. When 
A’jfI’ # A’Tl”, then the two thermal ratios q;PEG and 

viEG are not equal and the regenerator is also un- 
balanced in the sense that the forces imposing tem- 
perature changes in the packing in the hot period are 
not matched by the counter-forces operating in the 
cold period. When this happens, the packing responds 
more quickly to the changes imposed upon it. An extra 
parameter /j’ = (A’/n’)/(A”/n”) is needed to account for 
the effect of the unbalance in the system upon the 
transient performance. The use of harmonic mean 
reduced length AH is extended to this case. The 

FIG. 4. Response ~gl to step changes in hot inlet gas tem- 
perature: unbalanced regenerators (A’/II’ # A”/n”). Vertical 

lines denote time when equilibrium is restored. 

4000 - 

0 

2000 - 

00 - I I I 18 =4 

50 100 150 200 250 3( 

Reduced length A,_ 

FIG. 5. Dependence of time to regain equilibrium 0. on 
reduced length AH and the measure of unbalance /i. 

response &gl to step changes in hot inlet gas tempera- 
ture for AH = 24 is displayed in Fig. 4 where it is 
clearly shown that the regenerator exhibits greatest 

inertia when p = 1 and the time to re-establish equi- 
librium is reduced significantly for p = 4, b = 2 and 
fl= 4. The dependence of the dimensionless time 0 to 
regain equilibrium upon the parameters AH and b is 

clearly displayed in Fig. 5. 

STEP CHANGES IN GAS FLOW RATE 

Green [4] considered the effect of step change on a 
regenerator with symmetric configuration prior to the 
step change. He observed that the total time required 
to re-establish equilibrium reached a maximum for 
changes of approximately lo-20”/, and then was 
reduced for larger step changes in flow rate. 

We extend our results for step changes in inlet gas 
temperature to step changes in gas flow rate by con- 
sidering the state of the regenerator (symmetric or 
unsymmetric, balanced or unbalanced) after the step 



change, because the final condition towards which the 
regenerator will “converge” is determined by this final 
state. It is shown that these results can be used to 
predict !he transient responses that Green observed. 

Equations (5) and (6) indicate the depcndcnce of A 
and II on I&’ and II. If we consider the cast where /I 
is approximately linearly proportional to CZ’? A is 
independent of flow rate and the response of the 

regenerator following a step change in the hot period 
gas flow rate can he investigated by considering step 
changes in fl’ alone. 

4OOC - 

3500 - + + + 
++ 

3000 - ++*+ 

++ 
+ 

2500 - 
+ 

;f 
2OOG - 

0 
\I 1500 - 
u’ 

a” IOOC - x * x x xxxxxxxx 

xx 
500 _ _ _ - I xI__ 

_-I-- 

30 I I I I 

When the step change in rl’ is greater than the 
threshold value (;’ > I) the transient response of the 
regenerator is parameterised only by AH and p. The 
threshold value is usually less than 50”,,; for A = IO 
ll = 3 it iq lo”,, and for A -r 20 n = 1 it is 35”,,. The 

dependence of the transient response upon reduced 
length. reduced period and /j for step changes of 50”,(,. 
well beyond the threshold limit is therefore investi- 
gated. Our results are presented in Figs. 8 and Y. 

For such So”,, changes to Il’, for the symmetric case, 
c(/, and 0 are observed in Fig. 8 to be independent 

4W5’ 

A=20 

++ 
+++ - JXL’ 

++ 
++++ 

- 3OCO 
+ 

+ 

t- 
- 2500 

- 2ocu 0 

A=lO 
- !5CO 

> 
xxxxxx xx x x x x _ ,OOo 

xx 
A=5 

---__----- - - - -A - 500 

I I I I :0 
-5CO-400 -300 -200 -100 00 100 200 300 400 5C’) 

Percentage change to n’ 

FIG. 6. Dependence of time to equilibrium 0 on reduced length A for varying degrees of percentage 
change of n’. The final state of the regenerator is symmetric with reduced period n = 4. 

Up to a certain threshold, the time taken to re- 

establish equilibrium after a step change in hot gas 
flow rate, increases with the size of the step change. 
Beyond this threshold value of the percentage change 
made to the reduced period II’ and implicitly to the 
hot gas flow rate the transient response of the regen- 
erator is dependent only upon the final operating 
conditions. The threshold value increases with reduced 
length. These features are displayed in Fig. 6 for the 
case where the final state of the regenerator is sym- 
metric with n = 4. Reduced lengths A = 5, IO and 20 
are considered. However. it will be shown the 
parameter ; 

Magnitude of step change 

’ Magnitude of step change at threshold 

can be used to relate the transient response below the 

threshold value to the response beyond it. 
Indeed, the transient response of the regenerator IO 

step changes in rI’ (hot gas flow rate) can be parameter- 
ised by the harmonic mean reduced length AH, and 
the unbalance factor p, as in the case of step changes 
in inlet gas temperature, together with the additional 
factor y, The relatively small effect of ;I upon the 
dimensionless time 0 to regain cyclic equilibrium in 
the case of balanced regenerators is displayed in Fig. 7 
for 2 < AH < 30 and ;‘ = 1.: and 4. F‘rom Figs. 6 and 7 
it will be seen that the larger the reduced length, the 
more sensitive is the transient response to the value 
ofy. 

of reduced period. The total reduced time to equi- 
librium can thus be expressed as a function of A only 

(as /I = I), equation (18), which is of similar type to 
equation (16) relating 0 to A for step changes in inlet 
gas temperature. 

0 = 0.72/\‘+4.21\+8 for A < 30, c = 10e4. (18) 

For unsymmetric regenerators, harmonic means 

again provide adequate parameterisation of the tran- 
sient behaviour. Although small differences arise 

between the actual transient response of an unsym- 

oc 50 100 15 0 200 250 390 

Reduced length !LH 

FIG. 7. Dependence oftmic to equilibrium 0, upon reduced 
length A,, and ;’ the step sire parameter. 
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FIG. 8. Dependence ofresponsezy, upon n for step changes 
in n’. (Symmetric case.) 

metric-balanced regenerator and that of the corre- 

sponding equivalent symmetric regenerator, neverthe- 
less the total time to re-establish equilibrium for 

E = 10e4 remains accurately represented by this equiv- 
alent symmetric case. 

The effect of unbalance on the system, parameterised 
by fl, is illustrated in Fig. 9 where the response EgI is 
displayed for AH fixed at 10 and fl= 1, 2, 4, 4 and 4. 

The greatest inertia is again exhibited by the balanced 

l g, 

p=I- 

!3=2 

QO 200 400 600 800 IO00 I203 

A’ If II rrp 
* IO IO 4 4 I 
+ IO IO 3 6 2 
X!5 75 4 4 2 
075 15 4 4 & 

t IO IO 6 3 b2 

Cl5 75 3 6 4 

075 15 6 3 6 

FIG. 9. Response ~g, to a step change in n’ for unbalanced 
regenerators (A’/ll’ # A”;n”). Vertical lines denote time 

when equilibrium is restored. 

regenerator p = 1 (compare with Fig. 4 for step change 

in inlet gas temperature). 
Green’s results, can now be interpreted in terms of 

our observations. Step changes are made to a regen- 

erator which is initially symmetric in Green’s work. 
For small step changes, the regenerator’s final state 
will still be approximately symmetric and the time to 

re-establish cyclic equilibrium will increase with the 
size of the step change ;‘. For larger step changes, the 
regenerator becomes increasingly unbalanced and the 
dimensionless time 0 to regain equilibrium decreases. 

There is therefore a value of the step change in gas 
flow rate for a particular regenerator configuration at 
which the time to equilibrium is a maximum beyond 

which the effect of the unbalance /j becomes in- 

creasingly predominant. 

CONCLUSIONS 

The transient response of a thermal regenerator to 
step changes in either inlet gas temperature or gas flow 
rate can be characterised by the harmonic mean of the 
reduced lengths, AH and degree of unbalance b. The 

total dimensionless time to equilibrium is independent 
of reduced period and can be made up of a few long 

cycles or many short cycles. The inertia of the regen- 
erator increases with reduced length AH; for a particu- 
lar value of AH, a maximum inertia is exhibited by 
a balanced regenerator, ,0 = 1. Any unbalance (/I’ # 1) 
reduces the time taken for the regenerator to attain 

cyclic equilibrium. 
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APPENDIX 

C‘rirc,fftr for Dc/w/iu(q (.yc,//r, /-.quilihriu/t7 

Willmott 171 proposed a pseudo-thermal ratio for the 
rzth cycle 

and suggested that provided 

(Al) 

where i: is a small number. say IO-” 
librium could be considered to have 
rlth cycle. This criterion is satisfactory 
calculations. 

or lo- ‘. cyclic equi- 
been achieved in the 
for many regenerator 

If the true equilibrium value of L” is r”, that is if 

then the true convergence criterion is IZ”-a”/ < c. The 
criterion (Al) overcomes the fact that r” is unknown by 
presuming that if 

then i~.-T’, < i:. 

However, if the regenerator possesses a large thermal 
inertia and convergence of Z;: towards x” is very slow, the 
simulation can still be some way from equilibrium, even 
when the values of Z:: and .Z:i_, are close together: thus 
the criterion may give a misleading conclusion. 

The asymptotic convergence of 2; (or Zb) can be approxi- 
mated exponentially. It follows that an estimate of r”* of 
the value 2” can bc cxtrapolatcd [I I] using Aitken’s 
formula: 

This assumes that the discrepancy (Z, - r”) decreases expo- 
nentially with n. Using this estimate the present authors 
have found an improved criteria. replacing the true criterion 

by the approximate criterion 

iz;; -Xi’* 1 < i. 

i.e IA’) 

The simulation for regenerators with large inertia can be 
safely regarded as having reached cyclic equilibrium when 
the criterion (A2) is satisfied. 

The integration of the differential equations (l)-(2) over 
a complete cycle can be regarded as a function ,1 acting 
upon Z so that 

z, = f(.zL_ ,) 

if this function and its derivative could be expressed 
explicitly, then the iterative process would converge to a” 
provided a value of < existed on the range between Z;_, 
and a” such that 

I f’(i’)l < 1. 

However the function j’ cannot be expressed explicitly. 
Instead, only local estimates KZ(“’ of the derivative can be 
obtained : 

Hence 

Kz(“) = 
z:+,-z;: 
Z” _ Z”_ 

” n 1 

It can be shown that 

cc-z;,, I -J&,,iz:+,-z:i 
It follows that provided KZ’“’ < 0.5 

then In”-Z,+,I < iz;+,-z,l 

pointing to the adequacy of the Willmott (1964) method 
of ascertaining cyclic equilibrium in these cases. Where. 
however. 

0.5 < K/‘“’ < 1 

we observe that 

- I, lr”-Z;+*i > iz,,, -L,I 

and the “Aitken convergence criterion” should be used. 

REPONSE TRANSITOIRE DES REGENERATEURS A ECOULEMENT PERIODIQUE 

R&urn& Le stockage de chaleur. intrinsiquement lie au rig&Crateur, impose une inertle qui gouverne 
la r.&ponse instantan& aux changements de conditions opkratoires. On prhente, sous forme graphique 
et adimensionnelle, les rkponses d’un reg&nnCrateur thermique initialement en rCgime cyclique btabli, a 
des changements Cchelons de la tempirature d’entrk du gaz et du d&bit de gaz. On montre que I’inertie 
thermique cst caracttrisCe par une longueur rMuite A dans le cas t_quilibrC. On t-tudie l’effet du 

db@uilibre sur I’inertie thermique. dans I’opkration de r.&gineration. 

CjBERGANGSFUNKTION PERIODISCH DURCHSTRCiMTER REGENERATOREN 

Zusammenfassung Die warmespeichernde Packung, der Kernteil eines thermischen Regenerators, besitzt 
eine Trhgheit, welche eine augenblickliche Anpassung an veranderte Betriebsbedingungen verhindert. In 
dimensionsloser, graphischer Form werden die iibergangsfunktionen eines therm&hen Regenerators, 
der sich urspriinglich in zyklischem Gleichgewicht befindet, fiir den Fall permanenter, schrittweiser 
Aenderungen der Gaseintrittstemperatur und des Gasmengenstromes angegeben. Es wird gezeigt, daB die 
thermische Tragheit im Gleichgewichtsfall iiber die reduzierte LBnge A erfaI3t werden kann. Der 
Einflul3 des Nichtgleichgewichtes in den Regeneratorbetriebsbedingungen auf die thermische TrCgheit 

wird untersucht. 
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nEPEXOjJHbIE XAPAKTEPHCTl4Kkl TEI’IJIOBbIX PErEHEPATOPOB 
IIEPPIOJJMYECKOTO ~EfiCTBIUi 

AmoTaqm- Tennoasonapymuaa npoKnaAKa, npuMeHneMax B TennoBoM pereaepaTope, BbI3bI- 

BaeT liHept&iW, KOTOpaR IICKJtIOYaeT MrHOBeHHbld OTKJIHK Ha A3MeHeHAe pa6oywx yCJlOBHk B 
CTaTbe B 6e3pa3MepHOMrpat$HYeCKOMBHA'ZIlpeACTaBJIeHbI 3aBHCEiMOCTHXapaKTepHCTHKTeIIJIOBO~O 

pereHepaTOpa,IIepBOHaranbHo HaXOAHLLWrOCR B UHKJIWiWKOM paBHOBeCHU,OT IIOCTOIIHHMX CTyIIeH- 

'iaTb1X u3MeHeHllZiTeMnCpaTypbIra3aHaBXOAeupaCXOAara3a.~OKa3aHO,rTOnpHBeAeHHasAAHHa 

A IIapaMeTpH3yeT TeIUlOBylO HHepLWO B CJIj'Yae paBHOBeCH% tiCCJEAyeTCSi 3@&KT AHC6anaHCa B 

pa6o-re TennoBoro pereHepaTopa 38 cqeT TennoBofi mepum. 
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